skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Neyer, Meredith"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT An important characteristic of cosmic hydrogen reionization is the growth of ionized gas bubbles surrounding early luminous objects. Ionized bubble sizes are beginning to be probed using Lyman α emission from high-redshift galaxies, and will also be probed by upcoming 21 cm maps. We present results from a study of bubble sizes using the state-of-the-art thesan radiation-hydrodynamics simulation suite, which self-consistently models radiation transport and realistic galaxy formation. We employ the mean free path method and track the evolution of the effective ionized bubble size at each point (Reff) throughout the Epoch of Reionization. We show that there is a slow growth period for regions ionized early, but a rapid ‘flash ionization’ process for regions ionized later as they immediately enter a large, pre-existing bubble. We also find that bright sources are preferentially in larger bubbles, and find consistency with recent observational constraints at z ≳ 9, but tension with idealized Lyman α damping-wing models at z ≈ 7. We find that high-overdensity regions have larger characteristic bubble sizes, but the correlation decreases as reionization progresses, likely due to runaway formation of large percolated bubbles. Finally, we compare the redshift at which a region transitions from neutral to ionized (zreion) with the time it takes to reach a given bubble size and conclude that zreion is a reasonable local probe of small-scale bubble size statistics ($$R_\text{eff} \lesssim 1\, \rm {cMpc}$$). However, for larger bubbles, the correspondence between zreion and size statistics weakens due to the time delay between the onset of reionization and the expansion of large bubbles, particularly at high redshifts. 
    more » « less
  2. ABSTRACT Cosmological simulations serve as invaluable tools for understanding the Universe. However, the technical complexity and substantial computational resources required to generate such simulations often limit their accessibility within the broader research community. Notable exceptions exist, but most are not suited for simultaneously studying the physics of galaxy formation and cosmic reionization during the first billion years of cosmic history. This is especially relevant now that a fleet of advanced observatories (e.g. James Webb Space Telescope, Nancy Grace Roman Space Telescope, SPHEREx, ELT, SKA) will soon provide an holistic picture of this defining epoch. To bridge this gap, we publicly release all simulation outputs and post-processing products generated within the thesan simulation project at www.thesan-project.com. This project focuses on the z ≥ 5.5 Universe, combining a radiation-hydrodynamics solver (arepo-rt), a well-tested galaxy formation model (IllustrisTNG) and cosmic dust physics to provide a comprehensive view of the Epoch of Reionization. The thesan suite includes 16 distinct simulations, each varying in volume, resolution, and underlying physical models. This paper outlines the unique features of these new simulations, the production and detailed format of the wide range of derived data products, and the process for data retrieval. Finally, as a case study, we compare our simulation data with a number of recent observations from the James Webb Space Telescope, affirming the accuracy and applicability of thesan. The examples also serve as prototypes for how to utilize the released data set to perform comparisons between predictions and observations. 
    more » « less